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Abstract

The inherent safety and versatility of ultrasound imaging have made it widely accessible in modern
clinical settings for disease diagnosis and health management. Artificial intelligence (AI) that
can effectively learn ultrasound representations by integrating multi-source data holds significant
promise for advancing clinical care. However, the scarcity of large labeled datasets in real-world
clinical environments and the limited generalizability of task-specific models have hindered the
development of generalizable clinical AI models for ultrasound applications. In this study, we
present EchoCare, a novel ultrasound foundation model for generalist clinical use, developed
via self-supervised learning on our curated, publicly available, large-scale unlabeled dataset
EchoAtlas. EchoAtlas comprises 4.5 million ultrasound images, sourced from over 20 countries
across 5 continents and acquired via a diverse range of distinct imaging devices, thus encompassing
global cohorts that are multi-center, multi-device, and multi-ethnic. Unlike prior studies that
adopt off-the-shelf vision foundation model architectures, we introduce a hierarchical classifier
into EchoCare to enable joint learning of pixel-level and representation-level features, capturing
both global anatomical contexts and local ultrasound characteristics. With minimal training,
EchoCare outperforms state-of-the-art comparison models across 10 representative downstream
ultrasound benchmarks of varying diagnostic difficulties, spanning disease diagnosis, lesion
segmentation, organ detection, landmark prediction, quantitative regression, imaging enhancement
and report generation. The code and pretrained model are publicly released, rendering EchoCare
accessible for fine-tuning and local adaptation, supporting extensibility to additional applications.
EchoCare provides a fully open and generalizable foundation model to boost the development of
AI technologies for diverse clinical ultrasound applications.
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1 Introduction

Ultrasound imaging stands as a cornerstone of modern medicine, celebrated for its unique combination of
real-time assessment, cost-effectiveness, and inherent safety. This non-invasive and radiation-free modality
allows for the dynamic visualization of physiological processes, securing its indispensable role in a wide range
of clinical practices [1]. Despite these advantages, ultrasound diagnostic is heavily reliant on the skill of the
sonographer and the specialized expertise required to interpret the complex, often subtle, visual information.
This inherent complexity, coupled with the ubiquity and versatility of ultrasound, has spurred significant
interest in leveraging artificial intelligence (AI) to advance its use. As ultrasound imaging expands to new
anatomical regions and clinical applications, there is a growing demand for versatile and generalizable AI
models that can adapt to diverse clinical tasks and organs with minimal reliance on new labeled data. Meeting
this demand will not only broaden the application of ultrasound analysis but also accelerate the deployment of
smart healthcare solutions, making high-quality diagnostics more accessible and efficient.

Recent advances in foundation models (FM) using self-supervised learning have opened new frontiers
in medical AI [2, 3, 4, 5, 6, 7]. These models learn general-purpose feature representations directly from
raw data, eliminating dependence on extensive expert annotations. Upon completion of pretraining, these
models can be effectively adapted to a wide array of downstream clinical tasks with minimal or no additional
fine-tuning. This paradigm represents a significant advantage over conventional medical AI approaches, which
are typically limited to specific anatomical structures or require extensive retraining when adapted to each
new clinical application. However, pretraining of foundation models requires large-scale and diverse datasets,
making data acquisition and rigorous curation essential for developing clinically reliable and generalizable
systems.

Building on the success of vision foundation models, researchers have started adapting these approaches
to ultrasound imaging analysis [8, 9, 10]. Although initial results show promise, several critical challenges
could limit their potential clinical impact. First, the scale of available ultrasound datasets remains relatively
small, undermining the reliability of models for clinical deployment. Moreover, much of the pretraining data
employed in previous studies is private, creating barriers to reproducibility, broader research and application.
Second, current collections often focus on narrow anatomical regions, which is insufficient to fully capture the
diversity of whole-body regions. This limitation restricts their utility in comprehensive clinical workflows.
Third, most approaches rely on off-the-shelf vision foundation model frameworks [11], failing to systematically
explore network architecture optimizations tailored to the morphological complexity and spatial hierarchies
of anatomical structures. This oversight limits the model’s ability to capture anatomical relationships across
scales and organs during pre-training. Finally, existing research mainly focuses on a few downstream tasks
such as image classification or segmentation, leaving open questions about model capabilities for more diverse
clinical applications.

In this work, we introduce EchoCare, a novel foundation model for ultrasound images, accompanied
by a systematic investigation of its utility across a diverse spectrum of clinical tasks. EchoCare is pre-
trained on EchoAtlas, our newly curated large-scale and openly accessible dataset comprising 4.5 million
ultrasound images. Collected from multi-center, multi-device, multi-modality, and multi-ethnic global sources,
EchoAtlas ensures diverse data representation. EchoAtlas covers 9 major regions and 52 anatomical organs of
the human body, supporting models pretrained on it to generalize effectively across comprehensive whole-body
ultrasound clinical applications, as shown in Fig. 1. We have also optimized the architecture of the vision
foundation model to better capture hierarchical anatomical structures, from broad ultrasound regions (e.g.,
abdomen) to specific organs (e.g., liver, kidney), enabling the model to mimic human-like clinical diagnostic
reasoning. Extensive evaluations across eight categories of core ultrasound clinical tasks of varying diagnostic
difficulties, such as lesion segmentation, organ detection, disease diagnosis, and quantitative regression, reveal
that EchoCare significantly outperforms state-of-the-art general-domain foundation models, underscoring the
critical need for ultrasound-specific models. Compared with leading ultrasound-focused foundation models,
EchoCare also demonstrated superior performance, highlighting the advantages of pretraining on large, diverse
data. We will release both EchoCare and the EchoAtlas to promote clinical AI development in ultrasound
images upon publication.
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Figure 1: The constructed ontology shows a hierarchy of object types that are used to unify semantic concepts
across datasets. Bar plots showing the number of images containing that object type.

2 EchoAtlas

We establish so far the largest public ultrasound image dataset EchoAtlas, integrating 138 ultrasound image
datasets from over 20 countries and 5 continents (Fig. 2). Encompassing multiple body organs, scanning
devices, imaging modalities, and racial backgrounds, the dataset is designed to ensure data diversity and
enhance the generalization of pretrained models across diverse clinical applications. EchoAtlas adheres
to rigorous cohort inclusion and exclusion protocols to ensure high quality, including manual removal of
sensitive and non-ultrasound images, as well as text cleaning. Using a clinical anatomy system, we generated
canonical categorical labels for each image. The dataset’s ontology comprises eight representative clinical
regions including head, chest, abdomen, limbs, back, fetus, dorsum, pelvis, and an “other” category, with a
hierarchical structure spanning 52 meta-object types (e.g., cardiac ventricle) to 56 specific anatomic types (e.g.,
left cardiac ventricle), mirroring clinical diagnostic workflows. Moreover, an additional manual inspection was
performed by randomly sampling 100 images from each class in EchoAtlas to validate correctness. In total,
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Figure 2: Worldwide distribution of ultrasound imaging datasets in EchoAtlas. It illustrates the multi-
center, multi-ethnic data collection strategy supporting generalizable AI development for ultrasound clinical
applications across diverse populations.

EchoAtlas comprises over 4.5 million distinct image-class tuples, spanning five imaging modalities (B-mode,
CEUS, Dropper, M-mode, and Elastography), establishing it as a large-scale, diverse resource for clinical
ultrasound care.

2.1 Data Curation
Our data curation process commenced with a systematic search of open academic repositories, including Zen-
odo [12], Mendeley [13], Stanford AIMI, Figshare, and data/code platforms such as Kaggle [14], GitHub [15],
and medical challenge portals (e.g., Grand Challenge [16]). All data collection was concluded by 1 March
2025. Using "ultrasound" as a keyword, we retrieved approximately 13,000 potential datasets for initial
screening. The raw dataset underwent a series of exclusion steps (Fig. 3): 1) datasets were filtered to retain
common file formats–including image files (e.g., PNG, JPG, BMP) and compressed archives (e.g., ZIP, RAR,
TFRecord)–to confirm the presence of ultrasound images; 2) GPT-4o was utilized to extract direct download
links from dataset descriptions in excluded text-only candidates; 3) preliminary deduplication was performed
by comparing download URLs and computing image hash values for efficiency; and 4) manual curation was
implemented to eliminate intra-organ redundancy through fine-grained filtering. Moreover, to mitigate intrinsic
anatomical sampling biases and ensure comprehensive coverage, we strategically prioritized underrepresented
anatomical structures through targeted efforts: submitting formal access requests to specialized repositories
(e.g., EchoNet-Dynamic) and directly contacting authors of ultrasound studies to procure supplementary
datasets. Following our rigorous inclusion-exclusion pipeline, we compiled 138 high-quality ultrasound
datasets comprising over 4.5 million images, spanning nine major anatomical regions and 32 representative
organs.

2.2 Quality Control
An additional quality control and evaluation pipeline was implemented during construction of the EchoAt-
las dataset. To ensure data integrity, ultrasound images underwent a rigorous purification workflow: (1)
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Figure 3: Overview of the dataset curation pipeline for EchoAtlas. a. Schematic illustration of the dataset
collection and filtering workflow. Logos of major repositories are shown on the left, with keyword-based
search ("ultrasound") and exclusion criteria depicted on the right. b. Visualization of the curated dataset
composition, including a keyword cloud summarizing dataset metadata and representative ultrasound images
illustrating anatomical diversity.

Removal of extraneous patient metadata surrounding the image; (2) Discarding of completely empty images
or those containing fewer than 1,000 valid (non-zero) pixels; (3) For ultrasound videos, systematic uniform
sampling at 10-frame intervals to mitigate redundancy. Post-hoc evaluation of the filtering and deduplication
processes was conducted as follows: after data filtering, a random sample of 100 excluded candidates was ana-
lyzed, confirming no valid ultrasound images or additional data links. Following deduplication, 100 potential
duplicate datasets were manually assessed using a predefined similarity threshold (≥ 95%), verifying their
redundancy. These procedures streamlined the dataset from 1,136 to 334 entries by eliminating redundancy.
With the inclusion of specialized anatomically balanced datasets, we ultimately curated 138 high-quality
ultrasound datasets.

3 EchoCare Model Pre-training

3.1 Model Design
For large-scale visual pretraining on EchoAtlas, we proposed EchoCare, a self-supervised framework for
pre-training large vision transformer architectures based on the Masked Image Modeling (MIM) paradigm.
Specifically, EchoCare adopts a modular design, comprising an image encoder, an image decoder, and a
meta-object classifier (see Fig. 4), each module described in detail below.

The input to EchoCare is a masked image, which is passed along to the image. The image encoder
processes the high-resolution image and outputs multi-scale downsampled embeddings. We provide a flexible
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Figure 4: Flowchart of EchoCare. EchoCare takes a masked image as input and then outputs the recon-
structed ultrasound image. To capture both global anatomical contexts and local ultrasound characteristics,
EchoCare also incorporates a novel hierarchical classifier branch.

choice of backbone architectures with Swin Transformer base and large versions. The image decoder outputs
a reconstructed image that has the same size as the original image, with a grayscale value between 0 and 1
for each pixel. The meta-object classifier includes input from the image and output object semantics. The
output object semantics includes three levels: part, organ and anatomical structure. We follow SimMIM
and SwinUNETR to build the image decoder head. The decoder is a transformer that gradually upsamples
the image features back to high-resolution pixels. At the last layer, the attention dot product on the pixel
embeddings delivers the reconstructed image.

Unified masked pretraining. The input image x ∈ RH×W×C was split into N image patches {xp
i }Ni=1 and

then tokenized into z = [z1, ..., zN ] ∈ Vh×w as the output labels of MIM using an image patch embedding
layer. At the input layer, 50% image patches were randomly masked, and then the model predicted the
visual tokens zi of the masked patches. Next, we replaced the masked patches with a learnable embedding
e[M ] ∈ RD, making the input corrupted image patches xM = {xp

i : i /∈ M}Ni=1 ∪ {e[M ] : i ∈ M}Ni=1 that
are fed into the transformer encoder. To optimize the model, we employ a reconstruction loss that aims to
minimize the difference between the predicted pixel values of the masked image patches, x̂p

i , and the ground
truth pixel values, xp

i . Specifically, the reconstruction loss is defined as the Mean Absolute Error (MAE)
between the predicted and original patches:

LMIM =
1

M

∑
i∈M

|x̂p
i − xp

i |. (1)

Hierarchical pretraining. The second pre-trained output (i.e., the meta-objection classifier) is used to
further train EchoCare to represent images using hierarchical learning. Therefore, we designed a hierarchical
loss for image global representation learning. Specifically, let’s assume there are Np body parts at the first
level, which encompass No organs at the second level. Based on these No organs, there are Na anatomical
structures at the third level. Hence, the meta-object classifier has Np +No +Na outputs. For each category, if
a class is labeled positive, all its ancestor nodes (i.e, superclasses) should be labeled positive. And, if a class is
labeled negative, all its child nodes (i.e, subclasses) should be labeled negative. To ensure the satisfaction of
the above hierarchy constraints, we estimate a hierarchy-coherent score vector P ∈ [0, 1]Np+No+Na . For class
i, the updated score vector p = [pi] ∈ [0, 1] in P is given as:{

pH = min(su) if l̂ = 1,

1− pH = min(1− su) = 1−max(su) if l̂ = 0.
(2)
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Thus, after getting the hierarchical probabilities, we could maximize the log-likelihood between the probabili-
ties and ground truth classification labels:

LHIE =
∑

−l̂ log(pH)− (1− l̂) log(1− pH). (3)

Final pretraining loss function. Then, the final pretraining loss function is formulated as we combined
the LPRE = LMIM + LHIE. Through incorporating LMIM, we focus on fine-grained details at the pixel level,
ensuring that the model captures nuanced features within the data. In parallel, LHIE enriches the learning
process by providing a broader context through global representations. This dual approach not only improves
the model’s ability to generalize but also enhances its robustness in various applications.

3.2 Pretraining Protocol

Model architecture. In the EchoCare self-supervised pre-training pipeline we adopt SwinViT-B as the
visual backbone. The model is configured with an embedding dimension of 128, stage depths of [2, 2, 18, 2]
blocks, and multi-head attention heads of [4, 8, 16, 32]. The patchify stem operates on 2 × 2 pixels, yielding
128 × 128 patches at 256 × 256 input resolution. And, the window is set to 8 × 8. The encoder maps a
256 × 256 × 3 image to an 8 × 8 × 1024 feature grid, giving a 32× spatial reduction and 1024-dimension
final tokens for downstream learning. For image reconstruction decoder head, we used a VAE up-sampling
path that progressively doubles spatial resolution until the original 256 × 256 is restored. Each up-sampling
step is implemented as an Upsample layer with scale factor 2 and bilinear interpolation, followed by a 3 ×
3 convolution layer to refine the latent structure. Furthermore, the image hierarchical representation head is
implemented with a single fully connected layer that performs meta object classification directly on the pooled
1024-dimension deep representation feature.

Pretraining settings. Image augmentations included random vertical flip (P = 0.5), random horizontal flip
(P = 0.5), and random crop (P = 0.5) to convert images to greyscale and weak colour jittering (P = 0.2)
with specific adjustments to brightness, contrast, saturation and hue. We pretrained EchoCare for one million
steps using the pretraining loss of LPRE for images. The batch sizes were 256, and EchoCare used an input
image with 256× 256 pixels and then patched as 2× 2 pixels. We used the AdamW optimizer with β1 = 0.9,
β2 = 0.9 and ϵ = 0.9 for optimization. We used a cosine learning rate decay scheduler with a peak learning
rate of 1.0× 10−4 and a linear warmup of 10,000 steps. The weight decay was set as 0.05, and the stochastic
depth with a rate of 0.1 was used.

Pretraining advantages. Building on EchoAtlas, we pretrained EchoCare (Fig. 4), a novel vision foundation
model for ultrasound imaging, and applied it to a suite of clinical tasks. EchoCare employs a modular
design based on an extended self-supervised Masked AutoEncoder (MAE) architecture for representation
learning, comprising an image encoder to encode input ultrasound image features and two decoders: an image
decoder to reconstruct images from sparse patches and an anatomy-classifier decoder for joint learning of
hierarchical anatomic features (Fig. 4). Unlike prior medical foundation models that directly adopt off-the-
shelf MAE structures or focus solely on local pixel-level prediction, we introduce a novel representation-level
prediction branch, the anatomy-classifier, into the MAE framework. This branch learns global and hierarchical
anatomical relationships from body regions to organs to anatomic structures, mirroring clinical diagnostic
workflows. For example, the anatomy-classifier predicts pathways such as “Thorax→Heart→Apical two-
chamber” and “Thorax→Heart→Apical four-chamber”. Leveraging the inherent hierarchical organization of
the anatomy system, this high-level classification process evolves naturally without human intervention. By
integrating local pixel-level and global representation-level features, EchoCare enhances the encoder’s ability
to interpret ultrasound images, thereby boosting downstream clinical applications. In the following sections,
we demonstrate its versatility and generalization to diverse ultrasound clinical tasks.
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Table 1: Overview of the 10 curated clinical applications and their corresponding dataset partitions. For each
we specify the imaged country, anatomical region, anatomy organ(s), task category (segmentation, detection,
classification, landmark localization, regression, enhancement, or report generation), and the exact number of
training and testing videos/images.

Name Challenge Task type Country Anatomy part Anatomy organ Train Test

DDTI [17] Thyroid node segmentation Node segmentation Colombia Head & Neck Thyroid nodule 522 123

MusV [18] Vessel segmentation Vessel segmentation China
Head & Neck,

Low limb Carotid and femoral vessels 2,203 911

AbdomenUS Abdomen organ segmentation Organ segmentation China Abdomen
Liver, Kidney,

Pancreas, Bladder, Spleen 3,345 872

Thyroid Cine-Clip [19] Thyroid node diagnose Node classification USA Head&Neck Thyroid nodule 157 35

BRA-BUS [20]
BI-RADS category
assessment BI-RADS classficaion Brazil Thorax Breast 1,500 375

SYSU-FLL-CEUS [21] Liver lesion recognition Lesion classification China Abdomen Liver 285 68

FOCUS [22]
Thorax and cardiac
organ detection Organ detection Spain Fetus Fetal thorax and cardiac 250 50

BrainLandmark [23] Brain landmark location Landmark location Australia Fetus Fetal brain 80 24

CAMUS [24] Ejection fraction regression EF regression France Thorax Heart 450 50

USenhance [25]
Low-quality image
enhancement Image enhancement China

Head & Neck,
Abdomen, Thorax

Thyroid, Kidney, Liver,
Breast, Carotid artery 1,654 426

USreport [26] Clinical report generation Report generation China
Head & Neck,

Abdomen, Thorax Thyroid, Liver, Breast 1,118 279

4 Evaluation

4.1 Evaluation Methodology
To validate the generalizability of the pretrained foundation model EchoCare, we established 10 external
validation tasks spanning representative clinical ultrasound scenarios including lesion segmentation, disease
diagnosis, one-shot recognition, and quantitative regression. These tasks leveraged independent datasets
covering anatomical regions such as thyroid, venous systems, abdominal organs, and cardiac structures. All
external datasets were explicitly excluded from the EchoAtlas pretraining corpus to prevent data leakage and
ensure unbiased evaluation of pretraining effects. Below is a detailed breakdown of each clinical validation
task and corresponding dataset, organized by task category to highlight translational relevance.

4.2 Validation Tasks and Datasets
Thyroid node segmentation on DDTI dataset (1 classes): The DDTI dataset [17] for thyroid node
segmentation comprises 388 patients with B-mode ultrasound scans from the Instituto de Diagnóstico Médico
S.A. and National University of Colombia, annotated for nodule lesion segmentation. Images were extracted
from thyroid ultrasound video sequences acquired using TOSHIBA Nemio 30 and Nemio MX systems,
equipped with 12 MHz convex and linear transducers. Accurate automated segmentation of thyroid nodules
enables clinicians to assess morphological features–including size, shape, and margins–to discriminate between
benign and malignant lesions, which is critical for early thyroid disease diagnosis. Sub-images were cropped
from 42 composite sequences and integrated with single-frame images, yielding a total of 645 ultrasound
images with an average resolution of 348 × 280 pixels and mean mask area of 153.25 pixels. For cross-
validation, data were split at the patient level in an 8:2 ratio, resulting in 308:80 patient folds (522:123 images)
for training and evaluation.

Artery&vein segmentation on Mus-V dataset (2 classes): The Mus-V dataset [18] for vascular segmen-
tation comprises 3,114 ultrasound images from the Institute of Automation, Chinese Academy of Sciences,
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annotated for carotid and femoral vessel segmentation. Images were acquired from 11 healthy volunteers
using an Angel Pionner H20 Ultrasound Scanner, capturing carotid and femoral vessels in the arm and neck
regions. Accurate arterial-venous segmentation is critical for real-time low-risk vascular interventions–such
as those for coronary and peripheral vascular diseases–enabling clinicians to precisely target vessels and
minimize the risk of adjacent structure injury. The dataset includes separate annotations for arteries and veins
to facilitate vascular analysis and identification, with images sampled from 105 videos (5-160 frames per
video) at 400 × 600 pixel resolution. For evaluation, official train-test splits were used to achieve an 8:2
patient-level division, yielding 2,203:911 images for training and validation.

Abdominal multi-organ segmentation on AbdomenUS dataset (5 classes): Beyond single/two-class
segmentation, EchoCare was further validated on multi-organ segmentation to demonstrate its potential in
reducing annotation burdens on experts. The AbdomenUS dataset for multi-organ segmentation encompasses
4,217 ultrasound images from BGI Genomics Co., Ltd., acquired from 64 volunteers using the MGIUS-R3
ultrasound system. Images were annotated for at least one of five abdominal organs: 1) liver, 2) pancreas, 3)
kidney, 4) bladder, and 5) spleen. This multi-organ annotation framework allows clinicians to systematically
evaluate anatomical morphology–including organ shape, positional relationships, and pathological signs–from
diverse sonographic perspectives. For model training and validation, data were divided into an 8:2 ratio at the
case level, yielding a training set of 51 cases (3,345 B-mode images) and a validation set of 13 cases (872
B-mode images).

Thyroid nodule false positive mitigation on ultrasound cine-clip dataset (2 classes): The thyroid nodule
false positive mitigation task leverages the Ultrasound Cine-clip dataset from the Center for Artificial Intelli-
gence in Medicine & Imaging, comprising 192 histopathologically confirmed thyroid nodules (175 benign,
17 malignant) across 167 patients (mean age 56 ± 16 years, 137 female) who underwent cine ultrasound
between April 2017 and May 2018. The dataset includes ultrasound cine-clip sequences, radiologist-annotated
segmentation, patient demographics, lesion metrics (size/location), and definitive histopathological diagnoses.
Given the nonspecific nature of ultrasound findings, which often lead to unnecessary biopsies, AI-driven pre-
biopsy triage of benign and malignant nodules holds significant clinical value for reducing false positive cancer
classifications. All ultrasound acquisitions were performed using Logiq E9 (GE Healthcare) or Siemens S2000
systems, with images obtained by certified sonographers from supine patients with slightly hyperextended
necks. The cine-clips feature 802× 1054 pixel resolution. Following official dataset splits, the cohort was
partitioned into training (157 cine-clips, 4/5) and validation (35 cine-clips, 1/5) subsets to ensure reproducible
evaluation.

BI-RADS category assessment on BRA-BUS dataset (4 classes): The Breast Imaging Reporting & Data
System (BI-RADS) category assessment leverages the BRA-BUS dataset, which offers a standardized lexicon
and reporting framework for breast ultrasound. BI-RADS facilitates consistent communication of imaging
findings among radiologists and clinicians, with final assessments categorized by malignancy likelihood:
categories 2 (benign), 3 (probably benign), 4 (suspicious), and 5 (highly suggestive of malignancy), as
annotated by senior ultrasonographers. The BRA-BUS dataset comprises 1,875 anonymized images from
1,064 female patients, acquired using four ultrasound systems (GE Logiq 5, GE Logiq 7, Toshiba Aplio 300,
GE U-Systems) with linear-array transducers at the National Institute of Cancer (Rio de Janeiro, Brazil). For
validation, an official 5-fold cross-validation strategy was employed, combining four folds into the training set
(800 patients, 1,500 images) and using the remaining fold for validation (264 patients, 375 images).

Focal liver lesion diagnosis on SYSU-FLL-CEUS dataset (3 classes): The focal liver lesion (FLL)
diagnosis task leverages the SYSU-FLL-CEUS dataset, encompassing contrast-enhanced ultrasound data
for three pathological types: 186 hepatocellular carcinoma (HCC), 109 hemangioma (HEM), and 58 focal
nodular hyperplasia (FNH) cases. Acquired from the First Affiliated Hospital of Sun Yat-sen University
using an Aplio SSA-770A ultrasound system (Toshiba Medical Systems), the dataset captures FLLs with
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heterogeneous patterns, varying in size, contrast intensity, morphological features, and anatomical location
(resolution: 768× 576 pixels). Early FLL characterization from ultrasound is critical for timely oncological
intervention, as these lesions exhibit diverse imaging phenotypes. The dataset was case- and label-stratified
into 8:2 training-evaluation folds to maintain class distribution: the training set includes 150 HCC, 88 HEM,
and 47 FNH cases, while the evaluation set contains 36 HCC, 21 HEM, and 11 FNH cases.

Fetal thorax and cardiac detection on FOCUS dataset (2 objects): The FOCUS dataset [22] is designed
for fetal thorax and cardiac organ detection, comprising 300 four-chamber view fetal echocardiography
ultrasound images from 217 subjects across Hospital Clinic and Hospital Sant Joan de Deu in Barcelona, Spain.
This dataset captures the cardiothoracic diameter ratio–a critical biometric for assessing fetal congenital heart
disease–via ellipse annotations of cardiac and thoracic regions in every image. All images (230× 245 pixels,
uniform resolution) feature distinct annotations for fetal cardiac and thoracic structures, varying in size, aspect
ratio, and rotational orientation. Following official patient-level splits to prevent data leakage, the dataset was
partitioned into 250 training images and 50 evaluation images, maintaining clinical representativeness.

Brain landmark detection on BrainBenchmark dataset (24 landmarks): The brain landmark detection
task leverages the BrainBenchmark dataset [23], comprising 104 2D fetal brain ultrasound images acquired
at 20–20.6 weeks of gestation. Developed for monitoring neurodevelopmental trajectories, this benchmark
captures structural changes from embryonic stages to postnatal development, with images obtained from 70
pregnant women (median age 31 years, range 18–42) via routine mid-trimester scans using a Voluson E10
ultrasound system with a high-frequency transabdominal probe (C2-9). Each image is annotated with 24
anatomical landmarks including 4 skull landmarks, 3 thalamic landmarks, 8 cerebellar perimeter landmarks, 4
cavum landmarks, 3 Sylvian fissure landmarks, and 2 midline edge landmarks. Images were collected from 70
subjects with variable scanning frequencies (8 women scanned three times, 18 women twice, and 44 women
once), all without detected abnormalities. For validation, an 8:2 image-level split yielded 80 training and 24
evaluation images to ensure developmental stage representativeness.

Ejection fraction prediction on CAMUS dataset (500 cases): The CAMUS dataset [24] for ejection
fraction prediction comprises 500 2D ultrasound sequences, recognized as a standard benchmark for cardiac
function assessment. This regression task involves inputting ultrasound frame sequences to predict left
ventricular ejection fraction (LVEF), a critical biomarker for evaluating cardiac health and diagnosing heart
disease, particularly when derived from four-chamber view acquisitions. Ultrasound sequences were acquired
using GE Vivid E95 scanners (GE Vingmed Ultrasound, Horten, Norway) with a GE M5S probe (GE
Healthcare, US) at the University Hospital of St Etienne (France). Each sequence includes manual annotations
of left ventricular volumes at end-diastole and end-systole, from which ejection fraction is calculated. Following
official protocols, the dataset was partitioned into 450 training and 50 validation cases to ensure reproducible
evaluation of LVEF prediction models.

Image enhancement based on USenhance dataset (5 organs): The ultrasound image enhancement task [25]
leverages the USenhance Challenge 2023 dataset, comprising 2,100 ultrasound images (1,050 unpaired
low/high-quality image pairs) across five organs (thyroid, kidney, liver, breast, and carotid artery) from 109
patients. AI-driven enhancement of high-quality ultrasound images from low-fidelity inputs obviates the need
for hardware upgrades, driving technological innovation in ultrasound devices and enabling more precise
clinical applications. The dataset includes images acquired using diverse imaging systems: thyroid imaging
employs the mSonics MU1 (low-end) and Toshiba Aplio 500 (high-end); carotid artery and abdominal imaging
use SSUN (low-end) and Toshiba Aplio 500 (high-end); breast imaging utilizes the mSonics MU1 (low-end)
and Aixplorer system from SuperSonic Imaging (high-end). All images were resized to a uniform 256× 256
pixel resolution. Following an organ-stratified 8:2 split, the dataset was partitioned into 837 training image
pairs (232 thyroid, 161 breast, 97 kidney, 119 liver, 228 carotid) and 213 validation image pairs (59 thyroid, 41
breast, 25 kidney, 30 liver, 58 carotid), ensuring clinical representativeness across anatomical structures.

11



Table 2: Summary of evaluation metrics. This table outlines various metrics and their applicability across
different tasks, including classification (Cls.), segmentation (Seg.), detection (Det.), localization (Loc.),
regression (Reg.), enhancement (Enhance.), and report generation (Rep.).

Metric Formula
Tasks

Cls. Seg. Det. Loc. Reg. Enhance. Rep.

Accurayc (ACC) ACC = TP+TN
TP+TN+FP+FN ✓ ✓

Precision Precision = TP
TP+FP ✓ ✓

Recall Recall = TP
TP+FN ✓ ✓

F1 score F1 = 2× Precision×Recall
Precision+Recall ✓ ✓

The Area Under the Curve (AUC) AUC =
∑m

i=1

∑n
j=1 I(pi>pj)

m·n ✓

Dice Similarity Coefficient (DSC) DSC = 2×|X∩Y|
|X|+|Y| ✓

Normalized Surface Dice (NSD) NSD = |∂X∩∂Yϵ|+|∂Y∩∂Xϵ|
|∂X|+|∂Y | ✓

Average Precision (AP) AP = 1
N

∑
rk

max(Precision at rk) ✓

PCTR PCTR = (1− |Rtrue−Rpred|
Rtrue

)× 100% ✓

Mean Squared Error (MSE) MSE = 1
N

∑N
i=1 |pi − gi|22 ✓

Successful Detection Rate (SDR) SDR = 1
N

∑N
i=1 I (|pi − gi| ≤ τ) ✓

Mean Absolute Error (MAE) MAE = 1
N

∑N
i=1 |yi − ŷi|11 ✓

Natural Image Quality Evaluator (NIQE) NIQE =

√
(ν1 − ν2)T (

∑
1 +

∑
2

2 )−1(ν1 − ν2) ✓

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) BRISQUE = R(F36(I)) ✓

Perception based Image Quality Evaluator (PIQE) PIQE = 1
M

∑M
i=1 Qi ✓

Frechet Inception Distance (FID) FID = ||µ1 − µ2||22 +Tr(
∑

1 +
∑

2 −2(
∑

1

∑
2)

1
2 ) ✓

Bilingual Evaluation Understudy (BLEU) BLEU = BP× exp(
∑N

n=1 ωn log pn) ✓

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) ROUGE =
∑N

n=1 Recalln
N ✓

Metric for Evaluation of Translation with Explicit ORdering (METEOR) METEOR = Fmean × (1− Penalty) ✓

Ultrasound text report generation on USreport dataset (3 organs): The USreport dataset is designed
for ultrasound text report generation, comprising three independent clinical corpora of ultrasound image-text
pairs covering breast, thyroid, and liver examinations. Specifically, it includes 3,534 breast, 2,460 thyroid, and
1,397 liver cases, all sourced from the ultrasonic department database of the PLA General Hospital. AI-driven
automated report generation from ultrasound images holds promise to streamline clinical diagnostic workflows.
Each report is associated with two representative images selected by clinicians, forming image-text pairs
for model training. Following official data splits, an 8:2 train-validation partition was applied: Liver: 1,118
training, 279 validation cases; Breast: 2,827 training, 707 validation cases; Thyroid: 1,968 training, 492
validation cases.

4.3 Evaluation Metrics
In this section, we use a comprehensive array of evaluation metrics to rigorously assess the performance of
different models. These metrics span a diverse range of tasks, including classification, segmentation, detection,
localization, regression, enhancement, and report generation. Through a detailed analysis of their applicability
across these varied tasks, we achieve a nuanced understanding of the models’ performance attributes. This
systematic approach to evaluation not only facilitates the accurate identification of the strengths and limitations
of the models but also provides a robust foundation for future enhancements and optimizations.

Classification. For three diagnostic classification applications: 1) benign-malignant classification of thyroid
nodules; 2) breast tumor BI-RADS grading; and 3) diagnosis of focal liver lesions in abdominal ultrasound,
we used four metrics to assets model classification performance: Accuracy (ACC), Precision, Recall and F1

score. Each of these metrics is defined and explained as follows.
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• ACC: It was employed to assess recognition performance, defined as the ratio of correctly predicted
samples to the total number of samples (ranging from 0 to 1). In equation, TP denotes the number of
true positives, TN the number of true negatives, FP the number of false positives, and FN the number of
false negatives. A higher ACC indicates better overall prediction correctness.

• Precision: This metric is used to evaluate the accuracy of the positive predictions made by the model. It
is defined as the ratio of true positive samples to the total number of samples predicted as positive. In
other words, Precision measures the proportion of correct positive identifications among all positive
predictions. A higher Precision indicates a lower rate of false positives, reflecting a model’s reliability
in identifying positive cases.

• Recall: This metric assesses the model’s ability to identify all relevant positive cases. It is defined
as the ratio of true positive samples to the total number of actual positive samples. Recall measures
the proportion of correctly identified positive instances out of all actual positives. A higher Recall
indicates that the model effectively captures more true positives, thereby minimizing the number of false
negatives.

• AUC: The Area Under the Curve (AUC) was utilized to evaluate classification performance, quantifying
the model’s ability to rank positive instances higher than negative ones. Ranging from 0 to 1. In equation,
m and n denote the number of positive and negative samples, respectively; pi and pj are the predicted
probabilities for positive and negative samples, and I is the indicator function. An AUC of 1 signifies
perfect classification, while 0.5 indicates random performance.

Segmentation. Accurate segmentation in ultrasound images is crucial for enabling sonographers to delineate
anatomical structures and identify pathological conditions. To ensure a fair evaluation of the performance
of various segmentation models, we selected two widely used metrics: 1) the Dice Similarity Coefficient
(DSC) to assess regional segmentation performance; and 2) the Normalized Surface Dice (NSD) to evaluate
the accuracy of segmentation margins. Their detailed definitions and explanations are provided below.

• DSC: The Dice Similarity Coefficient (DSC) was used to assess segmentation performance, measuring
the spatial overlap between predicted and ground-truth region. In equation, X denotes the predicted
segmentation mask, and Y denotes the ground-truth mask. Ranging from 0 to 1, with higher values
indicating closer correspondence to the ground truth.

• NSD: The Normalized Surface Dice (NSD) was used to evaluate segmentation boundary accuracy,
quantifying the geometric correspondence between predicted and ground-truth surfaces. In equation, ∂X
and ∂Y denote the boundaries of the predicted segmentation and ground-truth mask, respectively. ∂Xϵ

and ∂Yϵ represent ϵ-dilated boundaries (with ϵ set to 2 mm in this study), which expand the boundary
regions to account for spatial tolerance. Higher NSD indicates more precise surface alignment between
the prediction and ground truth, reflecting superior boundary localization performance.

Detection. In clinical ultrasound workflows, reliable detection of organs underpins rapid localization and
downstream quantitative analysis. To fairly benchmark competing detection methods in fetal throax&cardiac
organ detection task, we selected the community-standard Average Precision (AP) as the performance metric.
Also, we included PCTR metric to estimate the precision of the Cardiothoracic diameter Ratio (CTR) biometric.
Formal definitions and interpretations are provided below.

• AP: The AP metric which computes the area under the precision-recall curve, providing a single value
that encapsulates the model’s precision and recall performance. To ensure an impartial comparison of
detection frameworks, we adopt AP under two complementary formulations: 1) box-AP, which evaluates
bounding-box overlap via the Intersection-over-Union (IoU) criterion, and 2) mask-AP, which assesses
pixel-level IoU between predicted and ground-truth masks.
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• PCTR: This metric was used to estimate the precision of CTR biometric measurement. In equation,
Rpred and Rtrue denote the predicted CTR and the ground truth CTR, respectively. The CTR is
formulated as R = bC/bT , where bC represents the length of minor axis of the cardiac object, bT
represents that of the thoracic object.

Location. Medical landmark location aims to automatically identify the locations of predefined anatomical
points. For fetal landmark location task, we used two ubiquitous metrics prevalent in the medical landmark lo-
cation domain: 1) Mean Squared Error (MSE), and 2) Successful Detection Rate (SDR). Detailed mathematical
formulations and clinical interpretations of each metric are presented as follows.

• MSE: The Mean Squared Error (MSE) metric was applied to quantify landmark localization error,
measuring the average squared pixel distance between predicted and ground-truth positions. In equation,
pi denotes the predicted 2D landmark coordinate, gi is the ground-truth coordinate, and N is the total
number of landmarks. Lower MSE values indicate more precise localization.

• SDR(τ): The Successful Detection Rate (SDR) was utilized to evaluate landmark detection accuracy,
quantifying the proportion of landmarks localized within a specified tolerance threshold τ . τ was set
to 2 pixel, 4 pixel, 10 pixel in this research. Higher SDR values reflect greater reliability in landmark
detection, with the threshold parameter τ adjusted to balance clinical tolerance for localization error.
This metric is particularly valuable for assessing model consistency across diverse anatomical landmarks.

Regression. Left-ventricular ejection fraction (LVEF) remains the cardinal numeric descriptor of systolic
performance and a principal therapeutic lighthouse in heart-failure care. Precision estimation of LVEF is
pivotal to the early diagnosis of both congenital and acquired cardiovascular disorders, informs therapeutic
decision-making, and enables robust prognostic stratification. To benchmark competing regression models we
adopt Mean Absolute Error (MAE), as the single summary metric. Its mathematical formulation and clinical
interpretation are detailed below.

• MAE: The Mean Absolute Error (MAE) metric was used to measure the average absolute deviation
between the predicted LVEF and the expert-derived reference. In equation, ŷi and yi denote the model-
estimated and clinically annotated LVEF values for the i-th subject, respectively. And, the N is the total
number of echocardiographic examinations in the testing set.

Enhancement. Ultrasound image enhancement can be formulated as an image generation task that aims to
transform low-quality ultrasound images into high-quality ones. However, collecting paired low-quality and
high-quality images in clinical settings can be challenging. As a result, the experiments were conducted under
unpaired settings using the public USenhance dataset. To enable a comprehensive and reference-free assess-
ment, we curate four blind-quality metrics: Natural Image Quality Evaluator (NIQE) [27], Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) [28], Perception based Image Quality Evaluator (PIQE) [29],
and Frechet Inception Distance (FID) [30]. Each detailed in the following subsections.

• NIQE: The Natural Image Quality Evaluator (NIQE) is based on the construction of a quality-aware
collection of statistical features based on a space domain natural scene statistic (NSS) model. In equation,
ν1, ν2 and

∑
1,
∑

2 are the mean vectors and covariance matrices of the generated-image Multivariate
Gaussian (MVG) model and the high-quality (reference-domain) image’s MVG model.

• BRISQUE: The Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) utilizes a NSS model
and introduces a novel approach to modeling the statistics of pairwise products of neighboring luminance
values. The parameters derived from this model provide a quantifiable measure of the naturalness of the
image. In equation, I is the input image whose naturalness score is to be computed, R(·) denotes the
Support Vector Regressor (SVR) pre-trained on the LIVE database, while F36(·) extracts 36 dimension
NSS features, including parameters of the symmetric generalized Gaussian distribution (SGGD) and the
asymmetric generalized Gaussian distribution (AGGD).
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• PIQE: The Perception based Image Quality Evaluator (PIQE) is a block-level and no-reference percep-
tual image-quality assessment method that detects local noise and distortion regions. In equation, Qi

is the perceptual noise-level score of the i-th image block, computed from perceptual features such as
brightness, contrast, and edges.

• FID: The Frechet Inception Distance (FID) is measures the distributional discrepancy between generated
high-quality and reference high-quality ultrasound images in a high-dimensional space through the
Frechet distance. In equation, µ1 and µ2 denote the 2048-dimensional mean vectors of the reference
and generated high-quality ultrasound image features extracted from the Inception-v3 pool3 layer,
respectively.

∑
1 and

∑
2 are the corresponding 2048 × 2048 covariance matrices. The term || · ||22

represents the Euclidean distance between the two mean vectors, while Tr(·) is the trace operator.

Report. Automatic generation of reports from medical images alleviates clinicians’ documentation workload,
allowing them to devote more time to patient care. For the USreport application task, it requires two input
ultrasound images and utilizes an AI algorithm to generate a text report. To conduct a comprehensive
assessment of the quality of the generated text reports, we selected two sets of metrics: Natural Language
Generation (NLG) metrics and Clinical Efficacy (CE) metrics. The NLG metrics comprise established
measures, Bilingual Evaluation Understudy (BLEU) [31], Recall-Oriented Understudy for Gisting Evaluation -
Longest Common Subsequence (ROUGE-L) [32], and the Metric for Evaluation of Translation with Explicit
ORdering (METEOR) [33]. The CE metrics include accuracy, precision, recall, and F1 score related to
essential entities. Each is explained in the following subsections.

• BLEU: The Bilingual Evaluation Understudy (BLEU) metric quantifies the quality of machine-translated
or automatically generated text by measuring n-gram overlap between system output and one or more
reference translations. In equation, BP is the brevity penalty, pn is the precision of n-grams, and ωn is
the weight. In this study, we set different n-gram lengths, with n = 1, 2, 3, 4, to comprehensively assess
text similarity.

• ROUGE-L: The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a metric used to
evaluate the quality of summaries by measuring the overlap between the generated summary and
reference summaries. In equation, Recalln represents the recall of n-grams based on the number of
matching n-grams between the generated summary and the reference summary, normalized by the
total number of n-grams in the reference. N indicates the maximum n-gram length considered in the
evaluation. To enhance the evaluation of coherence and fluency in generated summaries, we selected the
Longest Common Subsequence (LCS) for our analysis.

• METEOR: The Metric for Evaluation of Translation with Explicit ORdering (METEOR) is designed to
evaluate the quality of machine translation, integrating both precision and recall. It serves as a robust
evaluation metric for assessing the fluency and adequacy of translated content. In equation, Fmean

denotes the weighted F-score, reflecting the degree of alignment between the generated translation and
the reference translation. The Penalty term adjusts for the impact of incoherent matches.

• CE Metrics: For the CE metrics, our focus is on extracting key information from the reports rather
than assessing text similarity. We identified essential entities for each report based on input from
sonographers. Specifically, the entities includes: liver, capsule, echogenicity, vein, kidney, intrahepatic
duct, bile duct, gallbladder, margin, pancreas, pancreatic duct, lesion, spleen, nodule. Suppose each
dataset comprises a set of m key entities of interest, denoted as {1, 2, 3, . . . ,m}. If an entity i is
mentioned in the report, it is labeled as 1; otherwise, it is labeled as 0. This approach transforms the task
into a multi-label classification problem. Then, we could compute accuracy, precision, recall, and F1

score.
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4.4 Statistical Analysis

For all experimental results, performance metrics are reported as mean ± standard deviation across 20
independent trials. For each evaluation task, two-sample t-tests were conducted between the best-performing
model and all others, with statistical significance denoted by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001).
A two-sided P-value < 0.05 was considered statistically significant. For the thyroid nodule false positive
mitigation binary-classification task, accuracy, sensitivity, and specificity were determined using the optimal
cut-off value derived from the ROC curve to maximize the Youden index (sensitivity + specificity − 1). All
statistical analyses were performed using Python (version 3.10) and MedCalc (version 22.032). Across all
experimental settings, results are visualized via box plots (version 3.9.1) showing quartiles and whiskers at
1.5× interquartile range, based on 20 repeated runs to characterize model performance variability.

4.5 Results on Downstream Ultrasound Applications

We systematically evaluated EchoCare diagnostic performance on 10 clinical applications across 7 task types
(Fig. 5 and Fig. 6). These datasets cover tasks ranging from binary diagnosis task to multi-class classification,
single-class tumor segmentation to abdominal multi-organ segmentation, as well as ultrasound image en-
hancement, fetal landmark localization, organ detection and cardiac ejection fraction regression. We compare
EchoCare with pervious state-of-the-art (SOTA) task-specific models (w/o FM) and seven representative foun-
dation models: RadImageNet [34], UltraSAM [35], CLIP [36], BiomedCLIP [37], DINO [38], SimMIM [39],
USFM [8]. Each model is fully fine-tuned on the task-specific dataset and evaluated with their corresponding
metrics. EchoCare consistently outperformed all other models, achieving significant improvements on 10
clinical tasks. These results validate the effectiveness of Echocare. The domain-specific analyses of the
experimental results are as follows.

4.5.1 Disease diagnostic classification

Disease diagnostic classification represents a pivotal clinical application of vision foundation models. High-
performance ultrasound foundation models can substantially enhance the accuracy of disease lesion classifica-
tion, mitigate false-positive decisions, and thereby reduce patient anxiety and costs. To demonstrate the utility
in clinical decision-making, EchoCare was validated across three distinct diagnostic classification applications:
1) benign-malignant classification of thyroid nodules; 2) breast tumor BI-RADS grading; and 3) diagnosis of
focal liver lesions in abdominal ultrasound.

EchoCare achieved leading performance across all the evaluated classification tasks (Fig. 5a-c). Specifically,
EchoCare achieved an AUC (Area Under the ROC Curve) of 86.48%±1.19% and an F1-score of 87.45%±1.21%
on the thyroid nodule dataset (Fig. 5a); 70.36%±1.01% accuracy and 65.38%±1.06% macro-F1 on breast BI-
RADS grading (Fig. 5b); and 87.12%±0.91% accuracy and 83.44%±0.95% macro-F1 for focal liver lesions (Fig.
5c). Compared with the second-best model (USFM [8]), EchoCare outperformed by average margins of 3.35%
(AUC) and 4.25% (F1-score) on thyroid nodules, 3.09% (accuracy) and 3.85% (macro-F1) on breast BI-RADS,
and 3.45% (accuracy) and 3.98% (macro-F1) on focal liver lesions. These findings highlight EchoCare as a
powerful foundation model capable of learning discriminative image representations, demonstrating great
potential in distinguishing subtle differences between hepatocellular carcinoma, hemangiomas, and focal
nodular hyperplasia. These lesions often exhibit overlapping sonographic appearances, which is a key
challenge in achieving accurate manual diagnosis. Collectively, the experimental results confirm that EchoCare
serves as a reliable diagnostic auxiliary tool, advancing ultrasound-based disease diagnostic classification and
accelerating the clinical decision-making process.

4.5.2 Anatomical segmentation

Accurate segmentation in ultrasound images enables clinicians to characterize morphological features (e.g.,
size, shape) and detect pathological abnormalities (e.g., neoplastic lesions), which is fundamental for treatment
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Figure 5: Evaluation on disease diagnostic classification and anatomical segmentation. a-f. EchoCare con-
sistently outperforms previous state-of-the-art (SOTA) models (w/o FM) and other existing foundation models
(RadImageNet [34], UltraSAM [35], CLIP [36], BiomedCLIP [37], DINO [38], SimMIM [39], USFM [8])
across different classification and segmentation tasks. Specifically, for classification, we evaluate on benign-
malignant classification of thyroid nodules (a), breast tumor BI-RADS grading (b) and diagnosis of focal
liver lesions in abdominal ultrasound (c). For segmentation, we evaluate on thyroid node segmentation
(d), arterial-venous vessel segmentation (e), and the abdomen multi-organ segmentation (f). The two-sided
Wilcoxon signed-rank test was used to assess the statistical differences between EchoCare and the second-best
model. g. Six examples comparing the segmentation results by EchoCare and the ground truth.

planning and prognosis assessment. We evaluated different foundation models on three representative ultra-
sound images and clinical benchmarks for anatomical segmentation: the DDTI dataset [17] for thyroid node
segmentation, the Mus-V dataset [18] for arterial-venous vessel segmentation, and the abdomen multi-organ
segmentation.
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Figure 6: Evaluation on organ detection, landmark prediction, fraction regression and imaging enhance-
ment. a-d. EchoCare consistently outperforms pervious SOTA task-specific models (w/o FM) and existing
foundation models across different tasks: organ detection (a), landmark prediction (b), fraction regression
(c) and imaging enhancement (d). The two-sided Wilcoxon signed-rank test was used to assess the statistical
differences between EchoCare and the second-best model. e-f. Six examples comparing the detection, location
and imaging enhancement results by EchoCare and the ground truth.

Compared with existing methods, EchoCare achieved significantly higher performance (Fig. 5d-f),
surpassing the next best Dice Similarity Coefficient (DSC) by 2.09% and Normalized Surface Dice (NSD)
by 2.26% in the thyroid nodule segmentation task, mDSC by 1.36% and mNSD by 1.03% in the vessel
segmentation task (Fig. 5d), mDSC by 2.10% and mNSD by 4.36% in the multi-organ segmentation task
(Fig. 5f). In the vascular segmentation task, EchoCare outperforms the second-ranked model (SimMIM)
by a remarkable margin (Fig. 5e), which holds clinical significance for real-time vascular interventions
(e.g., coronary procedures). Furthermore, EchoCare also surpassed previous SOTA without FM architecture
(SwinUNETR [40]) in benchmark evaluations. We showed examples comparing EchoCare segmentation and
the ground truth across multiple organs, demonstrating the generalizability of EchoCare (Fig. 5g). The strong
performance of EchoCare on segmentation tasks represents a breakthrough for comprehensive abdominal
assessments, as clinicians require simultaneous visualization of the liver, pancreas, and kidneys to detect
pathological relationships (e.g., liver lesions compressing adjacent organs). Such consistency across single-
organ, vascular, and multi-organ tasks underscores EchoCare’s capacity to learn generalizable ultrasound
features for effective task adaptation.

4.5.3 Fetal cardiac organ detection

Fetal congenital heart disease (CHD) is a leading cause of infant mortality from birth defects, with an incidence
reaching up to 8-10 cases per 1,000 live births [22, 41]. Survival rates, requirement for intensive medical
care, and risk of developmental disabilities are contingent on the accuracy and timeliness of diagnosis. Thus,
early and precise prenatal sonographic diagnosis of CHD has been shown to reduce the risk of perinatal
morbidity and mortality. The four-chamber view in fetal echocardiography is a unique and essential tool for
assessing CHD. Diagnosis in this view relies on the cardiothoracic diameter ratio (CTR), a biometric defined
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as the ratio of thoracic to cardiac short-axis diameters. Therefore, detecting thoracic and cardiac regions from
four-chamber echocardiograms is a critical step for CTR analysis and represents a foundational step in CHD
diagnosis.

In this study, we evaluated the performance of EchoCare against seven state-of-the-art foundation models
and one previous SOTA model (Rotated Faster R-CNN [42]) for fetal thorax and cardiac organ detection
using the publicly available FOCUS dataset (300 four-chamber fetal echocardiography ultrasound images).
EchoCare outperformed all other models significantly (Fig. 6a). Specifically, it achieved 94.12%±0.71%

DSC and 97.26%±0.53% AP (Average Precision) for thoracic object detection, and 93.91%±0.82% DSC
and 96.11%±0.64% AP for cardiac object detection, surpassing the second-best model (USFM) by 1.7%
mDSC and 2.78% mAP in average detection. Compared to the top ImageNet-based model (Faster-RCNN),
EchoCare showed even larger margins (6.22% higher mDSC and 5.42% higher mAP). This outcome under-
scores that ultrasound, specific pretraining, distinct from natural image pretraining, more effectively captures
the domain-specific knowledge inherent to ultrasound imaging. Benefiting from its high detection accuracy,
EchoCare also ranked first in CTR measurement accuracy (94.42±1.23%), outperforming USFM by 2.78%
in PCTR. We provide examples to visualize the detection results of EchoCare and demonstrate the superior
performance by comparing with the ground truth (Fig. 5e). These comprehensive results demonstrate that
EchoCare has the potential to enhance and accelerate prognosis prediction for CHD in ultrasound clinical
practice.

4.5.4 Fetal brain landmark predication

Brain development involves progressive structural changes from early embryonic stages to several months after
birth. Identifying fetal brain structures in ultrasound images enables assessment of cortical and subcortical
gray matter changes, serving as a valuable tool for detecting developmental abnormalities. However, manual
landmark identification is labor-intensive, time-consuming, and prone to intra- and inter-rater inconsistency.

To address this challenge, we evaluated the performance of EchoCare against other pretrained founda-
tion models for predicting fetal brain landmarks using the publicly available BrainBenchmark dataset [23]
(104 2D fetal brain ultrasound images acquired at 20-20.6 weeks of gestation from 70 pregnant women).
EchoCare outperformed all foundation models significantly (Fig. 6b), achieving a notably lower average
MSE (7.71) compared to the second-best model (SimMIM, 8.39). EchoCare also dominated in successful
detection rate (SDR) across all pixel thresholds: at τ = 2.0 pixels, it achieved an SDR of 36.27, (surpassing the
second-best model SimMIM’s 30.24); at τ = 4.0 pixels, it achieved 49.13 (substantially exceeding SimMIM’s
42.87); and at τ = 10.0 pixels, it achieved 80.16 (versus BiomedCLIP’s 74.49). We also provide examples to
visualize the landmark prediction results of EchoCare and compare with the ground truth (Fig. 5f). These
results highlight EchoCare’s superiority in ultrasound-based landmark prediction, positioning it as a promising
tool for automated fetal brain assessment.

4.5.5 Cardiac ejection fraction regression

The assessment of Left Ventricular Ejection Fraction (LVEF) is one of the most important manners in the
evaluation of cardiac function. It quantifies the proportion of blood ejected from the left ventricle relative to its
total end-diastolic volume. In clinical settings, accurate measurement of LVEF is pivotal to the early diagnosis
of both congenital and acquired cardiovascular disorders, informs therapeutic decision-making, and enables
robust prognostic stratification.

After observing the superior performance of EchoCare across a range of ultrasound clinical tasks, we
further evaluated it on the LVEF regression task using the CAMUS benchmark dataset [24]. This dataset
encompasses 2D apical four-chamber and two-chamber view sequences from 500 patients. Model performance
is quantified by mean absolute error (MAE) with standard error. EchoCare exhibited superior performance and
outperformed the other 10 competing approaches (Fig. 6c). It achieved the lowest MAE of 3.91, surpassing
the second-best pretrained model (USFM) by a 19% reduction in MAE. Notably, it significantly outperformed
the echo-specific state-of-the-art model (EchoMEM), with a significant 43% reduction in MAE. These
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Table 3: Performance of foundation models for ultrasound report generation on the USData Liver
dataset. Models are fine-tuned for cross-modal representation learning using paired ultrasound images and
expert-written reports. Results are reported with mean and std over ten metrics.

Dataset Organ Type Metrics
Ultrasound domain Image-Text domain ImageNet domain Ultrasound domain

RadImageNet UltraSAM CLIP BiomedCLIP DINO SimMIM USFM EchoCare

USData Liver
BELU-1 (↑) 81.14±0.33 80.70±0.34 81.20±0.43 83.24 ±0.22 83.41 ±0.36 83.59 ±0.13 81.34 ±0.66 84.58 ±0.25

BELU-2 (↑) 76.32±0.47 75.73±0.48 76.43±0.60 79.07 ±0.27 79.22 ±0.46 79.42 ±0.15 76.62 ±0.92 82.05 ±0.20

BELU-3 (↑) 73.18±0.56 72.48±0.55 73.31±0.69 76.17 ±0.30 76.30 ±0.50 76.48 ±0.16 73.51 ±1.06 80.07 ±0.17

BELU-4 (↑) 70.75 ±0.63 69.96±0.59 70.89±0.75 73.88 ±0.31 73.97 ±0.53 74.15 ±0.19 71.09 ±1.14 78.47 ±0.14

METEOR (↑) 50.14 ±0.31 49.73±0.25 50.22±0.36 52.58 ±0.28 52.72 ±0.39 53.00 ±0.16 50.30 ±0.55 51.62 ±0.12

ROUGE-L (↑) 76.87 ±0.47 76.28±0.45 77.00±0.59 79.80 ±0.32 79.99 ±0.50 80.37 ±0.17 77.17 ±0.89 86.18 ±0.23

CE@ACC (↑) 42.82±0.91 42.32±0.72 42.36±0.97 47.50 ±2.42 47.64 ±1.67 48.43 ±3.67 43.00 ±1.17 57.82 ±0.12

CE@PPR (↑) 60.98±1.21 60.74±3.12 62.18±1.45 70.77 ±2.69 72.79 ±2.99 72.26 ±1.87 60.08 ±1.44 87.30 ±0.05

CE@SEN (↑) 68.76±0.59 68.71±0.81 69.04±0.74 70.94 ±1.50 71.52 ±1.15 71.12 ±2.50 69.07 ±0.59 91.76 ±0.06

CE@F1 (↑) 64.20±0.68 63.58±0.52 64.91±0.95 69.70 ±1.62 70.53 ±1.36 70.60 ±1.94 63.67 ±0.50 89.30 ±0.01

contributions underscore the potential of EchoCare to advance cardiac LVEF regression and its applicability in
real-world clinical workflows.

4.5.6 Low-quality imaging enhancement

High-quality ultrasound imaging is critical for the accurate identification of anatomical structures and disease
diagnosis. However, ultrasound examinations using handheld or low-end devices often yield suboptimal
images that compromise clinical diagnosis, particularly in resource-limited hospitals or regions. Enhancing
such low-quality ultrasound images using AI technologies, for example, through improved contrast, sharpness,
and signal-to-noise ratio, alongside noise reduction, could provide a cost-effective alternative to high-end
scanners. This approach may also promote the wider adoption of portable ultrasound systems, offering
substantial clinical benefits and ultimately improving patient outcomes.

We evaluated EchoCare on the low-quality ultrasound image enhancement task using the USenhance
benchmark dataset [25], which encompasses real-world clinical scans from 109 patients across five anatomical
regions: thyroid, kidney, liver, breast, and carotid artery. EchoCare was compared with 8 models, including
previous SOTA model (EnlightenGAN [43]), ultrasound-based models (RadImageNet [34], UltraSAM [35]),
image-text multimodal models (CLIP [36], BiomedCLIP [37]), and self-supervised frameworks (DINO [38],
SimMIM [39], USFM [8]). Consistent with previous findings, EchoCare outperformed all competing models
across four metrics: NIQE, BRISQUE, PIQE, and FID (Fig. 6d). Specifically, EchoCare achieved mean NIQE,
BRISQUE, PIQE, and FID values of 6.35%±1.13%, 17.62%±2.15%, 30.16%±1.34%, and 57.38%±2.36%,
respectively. These visualizations (Fig. 6g) further demonstrate the superior image quality enhancement ability
of EchoCare. These results demonstrate that EchoCare can effectively enhance low-quality ultrasound images,
highlighting the potential of AI for practical clinical applications in resource-limited settings.

4.5.7 Clinical report generation

Report generation is essential for healthcare system, providing critical information to clinicians and patients
for the diagnosis, prognosis, and treatment planning of a wide range of medical applications. Traditionally,
ultrasound reports are written manually by radiologists or sonographers, which is time-consuming and prone
to inter-observer variability. Recent advancements in natural language processing and medical image analysis
have enabled the development of automated ultrasound report generation systems.

To evaluate the effectiveness of our developed foundation model in ultrasound report generation, we
integrate EchoCare into an existing Transformer-based encoder–decoder report generator, where the input is
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Figure 7: Clinical report generation on USData [26] Liver dataset. a. Performance (%) comparison of
models on the USData [26] Liver dataset using six language metrics (BLEU-1 to BLEU-4, METEOR, and
ROUGE-L) and four classification metrics (Accuracy, Precision, Recall, and F1-score). Error bars denote
standard deviation across multiple runs. b. Example reports generated by the two strongest baseline models
(DINO [38] and SimMIM [39]) and EchoCare, compared against ground truth reports. Deep blue text indicates
exact matches, light-colored text denotes missing segments, and vivid purple highlights over-generated content.

the global visual features extracted from ultrasound images. The integrated model is then fine-tuned on the
USData Liver dataset [26], which contains paired ultrasound images and corresponding expert-written reports.
The experimental results (Fig. 7a) demonstrate that EchoCare achieved the best performance across all ten
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Figure 8: Label efficiency and further analysis results. a-j. Comparison between EchoCare and other
models (previous SOTA w/o FM and existing foundation models) in label efficiency generalization on ten
clinical applications, showing performance at various training data percentages. k. Pretrained with large-scale
ultrasound images, EchoCare significantly improved performance (%) over models based on natural image
pretraining on ten clinical applications. Moreover, with our designed model dual-branch architecture, the
performance can be further enhanced.

metrics. Notably, compared with the second-best model (SimMIM [39]), EchoCare outperformed by large
margins of 4.32% (BLEU-4), 9.39% (accuracy) and 18.70% (F1-score) (Table. 4). Besides, the examples of
generated reports (Fig. 7b) valid the ability of EchoCare for ultrasound report generation, demonstrating the
potential of EchoCare in improving the efficiency, consistency, and accessibility of automatic clinical report
generation.

5 Discussion

Ultrasound imaging is a crucial tool in modern medicine. This work presents a novel, open-source foundation
model named EchoCare to advance general-purpose clinical ultrasound applications. The model is pre-trained
on our curated, publicly available dataset of 4.5 million ultrasound images, featuring a highly diverse and
balanced distribution of images sourced from over 20 countries and 5 continents. To evaluate EchoCare’s
clinical utility, we conducted comprehensive validations across a wide range of downstream ultrasound tasks
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(lesion segmentation, disease diagnosis, organ detection, landmark prediction, quantitative regression, imaging
enhancement and report generation). The results demonstrate the strong effectiveness and generalization
capabilities of EchoCare: it consistently outperforms state-of-the-art foundation models such as UltraSAM [35],
BiomedCLIP [37], and USFM [8], achieving an average performance gain of 3.1% over the second-best model
across all tasks.

The pre-training of our foundation model is powered by EchoAtlas, the largest publicly available ultrasound
image dataset to date, featuring over 4.5 million images. The vast scale and diverse, balanced distribution of this
dataset are crucial to our success. The core idea behind our data strategy is simple yet powerful: by aggregating
numerous public datasets, we can significantly increase data size, expand protocol coverage, and diversify
patient populations. This approach allows our model to learn from a broad spectrum of global sources. This
extensive pre-training also grants EchoCare a remarkable degree of label efficiency for various downstream
clinical tasks (Fig. 8a-j), thereby alleviating the substantial annotation workload for medical experts. For
instance, in thyroid nodule segmentation, EchoCare can outperform other models using only 60% of the
labeled training data. Furthermore, EchoCare showed consistently high adaptation efficiency, suggesting that
EchoCare required less time in adapting to downstream clinical applications, e.g., EchoCare can potentially
save about 20% ∼ 40% of the training time required to achieve convergence for the task of disease prediction.

In addition to the substantial size and broad diversity of EchoAtlas, the designed dual-branch architecture
further contributes to the superior performance of EchoCare across a wide range of downstream clinical tasks.
Unlike previous medical foundation models that relied on standard MAE structures, our enhanced MAE
architecture incorporates a unique anatomy-classifier branch. This branch is designed to learn global and
hierarchical anatomical relationships, mirroring a clinician’s diagnostic process. By integrating this high-level,
representation-based learning with the local, pixel-level prediction of the MAE, our model’s encoder gains
a deeper understanding of ultrasound images. This dual-learning approach significantly boosts the model’s
ability to interpret images and perform well in a wide range of downstream clinical applications (Fig. 8k).

While EchoCare has demonstrated promising potential of pretrained foundations for ultrasound analysis,
several methodological frontiers remain. First, current pretraining exclusively uses image data, omitting
clinically actionable text modalities (e.g., ultrasound diagnostic reports). Future iterations will integrate vision-
language learning through curated datasets, enabling joint modeling of ultrasound images and associated
clinical narratives to expand clinical applications. Second, EchoCare currently treats dynamic modalities
(e.g., videos) to static frames, thus failing to utilize the temporal cues essential for applications like cardiac
motion analysis or vascular flow assessment. We will extend the architecture to incorporate spatio-temporal
transformers, enabling end-to-end training on native video sequences and preserving temporal dynamics.
Third, although results across other downstream clinical tasks demonstrate translational potential, rigorous
validation is required before clinical adoption, such as real-world integration with clinical decision support
systems.

6 Conclusion
In conclusion, we introduce EchoCare, a novel vision foundation model for ultrasound analysis, pretrained on
our curated EchoAtlas, which comprises over 4.5 million ultrasound images and is the largest ultrasound dataset
to date. By integrating a novel architecture with a massive, diverse dataset, EchoCare establishes an efficient
new paradigm for ultrasound image analysis, demonstrating robust adaptability to a broad spectrum of clinical
ultrasound tasks and delivering significant performance gains over existing foundation models. Critically, we
have made both the EchoCare model and EchoAtlas publicly accessible to accelerate advancements in medical
AI, improving clinical decision-making and patient care.
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Table 4: Transfer learning performance of different foundation models on 10 clinical applications. This
evaluation encompassed seven task types: seven task types of segmentation, classification, detection, location,
regression, image enhancement and report generation. Results are reported with mean and std.

Task type Metrics
SOTA w/o FM Ultrasound domain Image-Text domain ImageNet domain Ultrasound domain

SwinUNETR RadImageNet UltraSAM CLIP BiomedCLIP DINO SimMIM USFM EchoCare

Node
segmentation

DSC (↑) 78.44±0.85 79.87±0.83 79.93±1.02 79.40±1.23 79.43±0.83 80.46±1.10 81.08±0.74 80.78±0.39 83.17±0.19

NSD (↑) 82.55±0.86 82.90±0.86 83.29±0.92 80.81±0.86 82.56±0.79 83.32±0.43 84.16±0.72 83.11±0.43 86.59±0.21

Vessel
segmentation

mDSC (↑) 70.20±0.68 66.76±1.24 75.64±0.62 74.15±1.52 77.15±0.82 77.92±1.61 80.86±0.66 79.95±0.63 82.24±0.48

mNSD (↑) 84.74±0.57 80.94±1.38 85.68±0.46 85.59±1.28 87.37±0.53 87.23±1.39 88.06±0.58 88.03±0.44 90.53±0.36

Organ
segmentation

mDSC (↑) 61.01±0.38 65.37±0.53 66.52±0.73 67.62±0.36 68.59±0.32 68.33±0.31 70.58±0.43 68.12±0.24 72.68±0.31

mNSD (↑) 70.65±0.38 72.64±0.35 73.75±0.74 74.65±0.40 77.23±0.30 74.12±0.29 74.32±0.44 78.36±0.26 82.84±0.35

ViT RadImageNet UltraSAM CLIP BiomedCLIP DINO SimMIM USFM EchoCare

Node
classification

ACC (↑) 81.34±1.29 79.34±1.61 80.16±1.20 80.33±1.23 80.78±0.83 79.64±1.01 82.37±1.04 83.13±1.36 86.48±1.19

F1-score (↑) 78.64±1.37 76.06±1.29 79.28±1.38 79.94±0.92 80.26±1.09 79.83±1.76 81.61±1.31 83.20±1.13 87.45±1.21

BI-BADS
classification

ACC (↑) 65.40±1.26 64.93±1.22 64.17±1.44 66.27±1.31 66.13±1.03 66.58±1.42 66.74±1.66 67.27±1.03 70.36±1.01

macro-F1 (↑) 60.45±1.56 59.45±1.12 58.86±1.46 59.58±1.01 60.49±1.23 60.63±1.63 61.01±0.98 61.53±1.35 65.38±1.06

Lesion
classification

ACC (↑) 82.61±1.41 81.67±0.83 83.69±0.96 82.66±1.03 82.12±1.23 81.93±1.13 83.61±0.82 83.67±0.98 87.12±0.91

macro-F1 (↑) 78.39±1.14 77.26±0.86 79.37±1.08 78.16±0.93 78.23±1.03 76.73±0.92 79.12±0.71 79.46±0.86 83.44±0.95

Faster R-CNN RadImageNet UltraSAM CLIP BiomedCLIP DINO SimMIM USFM EchoCare

Organ
detection

mAP@box (↑) 91.38±1.44 92.40±1.01 87.04±0.98 93.78±0.62 94.31±0.74 93.11±0.92 93.83±0.68 94.02±0.73 96.80±0.64

CTR (↑) 87.83±1.61 88.45±1.38 84.11±1.45 89.71±1.13 91.17±1.33 90.23±1.37 91.51±1.20 91.64±1.03 94.42±1.23

ViTPose RadImageNet UltraSAM CLIP BiomedCLIP DINO SimMIM USFM EchoCare

Landmark
location

MAE (↑) 10.27±0.92 9.51±0.65 9.75±0.76 9.21±0.73 8.89±0.62 9.11±0.91 8.39±0.74 8.87±0.93 7.71±0.79

SDR@2 (↑) 19.20±0.85 25.64±0.79 25.39±0.83 26.86±0.92 29.15±0.71 27.15±0.96 30.24±0.94 29.52±0.74 36.27±0.75

SDR@4 (↑) 32.50±0.89 36.85±0.65 34.43±0.77 38.48±0.72 42.34±0.50 38.73±0.61 42.87±0.76 41.29±0.77 49.13±0.82

SDR@10 (↑) 66.19±0.83 70.34±0.81 68.18±0.94 71.26±0.61 74.49±0.74 69.31±0.83 74.19±0.75 72.89±0.82 80.16±0.64

EchoNet RadImageNet UltraSAM CLIP BiomedCLIP DINO SimMIM USFM EchoCare

EF regression MAE (↓) 4.34±0.08 4.51±0.09 4.26±0.06 4.57±0.08 4.18±0.05 4.26±0.07 4.13±0.05 4.10±0.06 3.91±0.05

EnlightenGAN RadImageNet UltraSAM CLIP BiomedCLIP DINO SimMIM USFM EchoCare

Image
enhancement

NIQE (↓) 6.83±1.49 9.51±0.65 9.75±0.76 9.21±0.73 8.89±0.62 9.11±0.91 8.39±0.74 6.81±1.68 6.35±1.13

BRISQUE (↓) 20.68±2.72 25.64±0.79 25.39±0.83 26.86±0.92 29.15±0.71 27.15±0.96 30.24±0.94 21.86±2.47 17.62±2.15

PIQE (↓) 30.29±1.28 36.85±0.65 34.43±0.77 38.48±0.72 42.34±0.50 38.73±0.61 42.87±0.76 41.29±0.77 30.16±1.34

FID (↓) 62.19±2.48 70.34±0.81 68.18±0.94 71.26±0.61 74.49±0.74 69.31±0.83 74.19±0.75 63.84±3.18 57.38±2.36
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Table 5: The information of dataset assembly. Our work provides detailed annotations for each ultrasound
volume, systematically documenting critical metadata that was absent in prior datasets. This includes specific
acquisition equipment (e.g., Philips EPIQ, Siemens ACUSON), ensuring transparency and reproducibility in
dataset composition.

Dataset organs cases images source
countries ultrasound scanners

1. UIC [44, 45] 1 - 2206 GB & US -

2. CARDIAC [46] 1 - 100 US Philips iE33/Sonos/EPIQ 5G/EPIQ 7c
Siemens ACUSON SC2000

3. CardiacUDA [47] 1 100 24041 CN Philips
HIDACHI

4. BUSI [48] 1 600 1707 EG GE LOGIQ E9
5. UBIBC [49] 1 - 509 - -
6. US3M [50] 1 248 1034 CN Philips & Siemens
7. LRHR [51] 4 - 1523 - -
8. 2ULM [52] 1 - 683 - -

9. BrEaST [53] 1 256 248 PL

Hitachi ARIETTA 70
Samsung RS85

Philips Affiniti 70G/EPIQ 5G
Esaote

10. MBUD [54] 1 - 250 - -
11. UDIAT [55] 1 - 163 ES Siemens ACUSON Sequoia C512
12. OMI [56] 1 - 230 - -
13. BUET [57] 1 223 261 BD GE SonixTouch Research
14. BUSI_WHU [58] 1 - 927 CN -
15. STU [59] 1 - 43 - -
16. BUDataset [60, 61, 62] 1 232 232 IR Supersonic Imagine AixPlorer Ultimate
17. LOGIQ [63] 1 192 201 - GE LOGIQ P7
18. JNU [64] 1 51 4880 CN Youkey D8
19. HC18 [65] 1 551 999 NL GE Voluson E8/730
20. DVD [66] 1 - 373 - -
21. PSFHS [67] 1 - 1358 - -
22. CAUCD [68] 1 18 129 IN -
23. HR [69] 1 - 1623 - -
24. USL [70, 71] 1 7 41111 CH Siemens
25. S [72] 1 - 314 - -

26. AULI [73, 74] 1 11468 735 CN

Hitachi Preirus
Noblus

Aloka a10/a7/3500
Philips EPIQ7/Affiniti50/HD7/IU22

SonoScape S60/S40
GE LOGIQ E9

Mindray Resona 7/DC-8
Esaote MyLab90/MyLab40/MyLab60

Toshiba Apilo500
Siemens S3000/Sequoia512

Supersonic Aixplorer
27. AUITD [75] 1 - 1353 DZ -
28. OpenCAS [76] 1 - 4109 - GE Logiq E9
29. TN3K [77, 78] 1 2421 3493 CN -
30. ThySeg [79] 1 28 7918 DE Siemens ACUSON NX-3
31. UIH [80] 1 - 321 - -
32. DUI [81] 1 235 404 ES Esaote MyLab Class C
33. SPJ [82] 1 - 51 CN -
34. Butterfly [83] 1 20 1533 - Butterfly
35. TFFPU [84] 1 - 14802 - -
36. KUI [85] 1 - 9416 - SAMSUNG RS85/HS60/RS80A/HS70A
37. NDF [86] 1 - 513 - -
38. UNS [87] 1 - 5635 - -
39. UI [88] 1 - 17034 - -
40. DUPI [89] 2 - 500 - -
41. TDUPI [90] 2 - 97 - -
42. PCOS [91] 1 - 13 - -
43. 2000 [92] 1 - 96 - -
44. OCD [93] 1 469 648 - -
45. MMOTU [94] 1 294 1639 CN Mindray Resona8
46. EBUS [95] 1 4 1021 NO Olympus EUS Exera EU-C60
47. 3VG [96] 1 100 253 RO GE Voluson 730 Pro/LOGIQ e
48. FUCD [97] 1 - 704 CN Verasonics L11-5v/L22-14vX

49. ReMIND2Reg [98] 1 114 952 US GE N13C5/BK5000
Brainlab AG BK N13C5

50. CuRIOUS [99] 1 23 1752 NO Sonowand AS
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Dataset organs cases images source
countries

ultrasound
scanners

51. CAT [100] 1 5 2973 IE Terason T3000
52. CC [101] 1 58 9028 PL Philips HD15
53. MUPSD [102] 1 75 1028 US -
54. TRUS [103] 1 141 12000 GB Hitachi HI VISION Preirus
55. SPLOA [104] 1 - 900 - -
56. LN [105] 1 - 1637 - -
57. PAD [106] 4 579 1922 DE Toshiba Xario/Aplio XG
58. TUS [107, 108, 109, 110] 1 19 40938 GB BK
59. AA [111] 1 300 6620 SL Telemed MicrUs Pro-C60S

60. FetalAbdomenSeg [112] 1 169 1588 BR
Siemens ACUSON

GE Voluson 730
Philips EPIQ Elite

61. PMUB [113] 1 1151 509646 US Hitachi Hi-Vision 5500/Noblus

62. LEP [114] 1 420 3500 CN

Olympus
PENTAX
Fujifilm
Aloka

63. BBDTD [115] 1 - 256423 - SonoScape E1
64. CoA [116] 1 53 200 CN GE Vivid7 & Philips IE33
65. MVSeg [117] 1 - 16884 CA & GB Philips EPIQ/iE33
66. ArteryUS [118] 1 11 1100 - Mindary UMT-500Plus
67. ERUS [119] 1 77 10006 CN CANNO

68. UBPD [120] 1 101 1052 CN Siemens ACUSON NX3 Elite
Philips EPIQ5

69. LUMINOUS [121] 1 109 341 US GE LOGIQ e

70. FETALPLANE [122] 1 1792 7476 ES GE Voluson E6/S8/S10
Aloka

71. MUST [123] 2 1283 8169 NL Esaote MyLab Twice

72. DeepACSA [124] 2 77 20000 -
Siemens ACUSON Juniper

SuperSonic Imagine Aixplorer Ultimate
Esaote MyLab 70

73. FALLMUD [125] 1 - 813 GB Aloka SSD-5000 PHD

74. ATD [126] 1 1 801 GB Telemed LS128
Analogic SonixTouch

75. Leg-3D-US [127] 1 28 52795 DE SuperSonic Imagine Aixplorer
76. SlicerIGT [128] 1 8 706 US Telemed MicrUs EXT-1H

BD: Bangladesh BR: Brazil CA: Canada CH: Switzerland CN: China DE: Germany DZ: Algeria EG: Egypt ES: Spain
FR: France GB: United Kingdom IE: Ireland IN: India IR: Iran NL: Netherlands NO: Norway PL: Poland RO: Romania
SL: Sierra Leone US: United States
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Table 6: Download links of the 76 datasets in EchoAtlas.

Dataset Download Link

AA [111] https://zenodo.org/records/12697994
ArteryUS [118] https://data.mendeley.com/datasets/d4xt63mgjm/1
ATD [126] https://zenodo.org/records/4989216
AUITD [75] https://www.kaggle.com/datasets/azouzmaroua/algeria-ultrasound-images-thyroid-dataset-auitd
AULI [73] https://zenodo.org/records/7272660
BBDTD [115] https://zenodo.org/records/7081639
BrEaST [53] https://www.kaggle.com/datasets/magpiesings/breast-lesions-ultrasound-clinical
BUDataset [60, 61, 62] https://qamebi.com/breast-ultrasound-images-database/
BUET [57] https://www.kaggle.com/datasets/jarintasnim090/buet-breast-ultrasound-data
BUSI [48] https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset
BUSI_WHU [58] https://data.mendeley.com/datasets/k6cpmwybk3/1
Butterfly [83] https://github.com/jannisborn/covid19|_ultrasound/tree/master/data
CARDIAC [46] https://humanheart-project.creatis.insa-lyon.fr/database/
CardiacUDA [47] https://www.kaggle.com/datasets/xiaoweixumedicalai/cardiacudc-dataset
CAUCD [68] https://www.kaggle.com/datasets/pahunichoudhary/carotid-artery-ultrasound-and-color-doppler
CAT [100] https://zenodo.org/records/4934835
CC [101] https://zenodo.org/records/5147854
CoA [116] https://zenodo.org/records/4960642
CuRIOUS [99] https://archive.norstore.no/pages/public/datasetDetail.jsf?id=10.11582/2017.00004
DeepACSA [124] https://zenodo.org/records/5799204
DUI [81] https://www.kaggle.com/datasets/alfageme/dermatologic-ultrasound-images
DUPI [89] https://zenodo.org/records/5110223
DVD [66] https://www.kaggle.com/datasets/yasinelh/ultrasoundvd
EBUS [95] https://zenodo.org/records/4991954
ERUS [119] https://arxiv.org/abs/2408.10067
FALLMUD [125] https://kalisteo.cea.fr/index.php/fallmud/
FetalAbdomenSeg [112] https://data.mendeley.com/datasets/4gcpm9dsc3/1
FETALPLANE [122] https://zenodo.org/records/3904280
FUCD [97] https://zenodo.org/records/14511961
HC18 [65] https://zenodo.org/records/1322001
HR [69] https://www.kaggle.com/datasets/priyeshk/carotid-artery-ultrasound-scans-hr-image
JNU [64] https://figshare.com/articles/dataset/JNU-IFM/14371652
KUI [85] https://www.kaggle.com/datasets/gurjeetkaurmangat/kidney-ultrasound-images-stone-and-no-stone
LEP [114] https://zenodo.org/records/8041285
Leg-3D-US [127] https://www.cs.cit.tum.de/camp/publications/leg-3d-us-dataset/
LN [105] https://zenodo.org/records/12702916
LOGIQ [63] https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253202#sec005
LRHR [51] https://www.kaggle.com/datasets/chirag2466/ultra-lr-hr-ultrasound-image-dataset-for-research
LUMINOUS [121] https://users.encs.concordia.ca/ impact/luminous-database/
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https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253202#sec005
https://www.kaggle.com/datasets/chirag2466/ultra-lr-hr-ultrasound-image-dataset-for-research
https://users.encs.concordia.ca/~impact/luminous-database/


Table 7: (Continued) Download links of the 76 datasets in EchoAtlas.

Dataset Download Link

MBUD [54] https://www.kaggle.com/datasets/jarintasnim090/mendeley-dataset
MMOTU [94] https://github.com/cv516Buaa/MMOTU_DS2Net
MUPSD [102] https://zenodo.org/records/10475293
MVSeg [117] https://www.synapse.org/Synapse:syn52383425
NDF [86] https://www.kaggle.com/datasets/ahmadshtaiyat/new-data-f
OCD [93] https://www.kaggle.com/datasets/turkertuncer/ovarian-cyst-dataset
OMI [56] https://www.kaggle.com/datasets/jarintasnim090/omi-dataset
OpenCAS [76] http://opencas.webarchiv.kit.edu/data/thyroid.zip
PAD [106] https://zenodo.org/records/7711412
PCOS [91] https://www.kaggle.com/datasets/anaghachoudhari/pcos-detection-using-ultrasound-images
PMUB [113] https://www.cancerimagingarchive.net/collection/prostate-mri-us-biopsy/
PSFHS [67] https://zenodo.org/records/10969427
ReMIND2Reg [98] https://zenodo.org/records/12700312
S [72] https://www.kaggle.com/datasets/tunkedsaro/sliver
SlicerIGT [128] TO DO
SPJ [82] https://github.com/hidden-ops/NHBS-Net_SPJ_dataset
SPLOA [104] https://zenodo.org/records/13195053
STU [59] https://github.com/xbhlk/STU-Hospital
TDUPI [90] https://zenodo.org/records/5110198
TFFPU [84] https://www.kaggle.com/datasets/bachaboos/tf-for-pocovid-ultrasound
ThySeg [79] https://www.cs.cit.tum.de/camp/publications/segthy-dataset/
TN3K [77, 78] https://github.com/haifangong/TRFE-Net-for-thyroid-nodule-segmentation
TRUS [103] https://zenodo.org/records/8004388
TUS [107, 108, 109, 110] https://zenodo.org/records/7740734
UBIBC [49] https://www.kaggle.com/datasets/vuppalaadithyasairam/ultrasound-breast-images-for-breast-cancer
UBPD [120] TO DO
UDIAT [55] https://www.kaggle.com/datasets/jarintasnim090/udiat-data
UIC [44, 45] https://data.unityimaging.net/
UI [88] https://www.kaggle.com/datasets/thegna/ultrasound-img
UIH [80] https://www.kaggle.com/datasets/shengwang1130/ultrasound-image-set-of-hemangioma3
UNS [87] https://www.kaggle.com/datasets/anupaankarigari/ultrasound-nerve-segmentation
US3M [50] https://www.kaggle.com/datasets/timesxy/multimodal-breast-ultrasound-dataset-us3m
USL [70, 71] https://zenodo.org/records/12697994
2000 [92] https://www.kaggle.com/datasets/shnotweta/2000-images-of-ultrasound-for-pcos
2ULM [52] https://www.kaggle.com/datasets/drjaveriaamin/ultrasound2ulm
3VG [96] https://zenodo.org/records/7323401
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